
Fully Convolutional Network for Semantic
Segmentation

Jack Kai Lim
Halıcıoğlu Data Science Institute

University of California, San Diego
jklim@ucsd.edu

Vivian Chen
Halıcıoğlu Data Science Institute

University of California, San Diego
vnchen@ucsd.edu

Hou Wan
Halıcıoğlu Data Science Institute

University of California, San Diego
hwan@ucsd.edu

Elsie Wang
Halıcıoğlu Data Science Institute

University of California, San Diego
e2wang@ucsd.edu

Abstract

In this paper, we explore the application of Fully Convolutional Networks (FCNs)
for the task of semantic segmentation, with a focus on the PASCAL VOC-2007
dataset. Semantic segmentation is a crucial task in computer vision, aiming to
classify each pixel in an image into one of the predefined classes, which has
significant implications for various real-world applications like autonomous driving,
medical image analysis, and precise object detection. Our study begins with
the implementation of a baseline FCN model, evaluating its performance based
on Intersection over Union (IoU) and pixel accuracy metrics. We delve into
various improvement strategies over the baseline, including the adoption of the
Cosine Annealing learning rate scheduler, data augmentation techniques, and
addressing class imbalance issues through weighted loss functions. Additionally,
we experiment with other architectures like a custom simplified U-Net, ResNet-50
with transfer learning, and the original U-Net model, comparing their performance
against our baseline and improved FCN models. Our results demonstrate the
effectiveness of these strategies and architectures in enhancing the model’s ability to
accurately segment images, with detailed discussions on the trade-offs and insights
gained from each approach. Our findings demonstrate that these strategies and
alternative architectures significantly improve the model’s segmentation accuracy.
Notably, the incorporation of transfer learning with ResNet-50 emerged as the most
effective approach, yielding the best results in terms of segmentation performance.

1 Introduction

The problem we are trying to tackle in this project is exploring the use of Fully Convolutional
Networks (FCN) for semantic segmentation. Semantic segmentation is the process of classifying
each pixel in an image to a specific class. As a Deep Learning task this is an extremely challenging
one as there are many factors that are taken into consideration. The number of pixels - (w× h) of the
image, the number of channels in the image and the number of pixel classes. This is an important
task with many real world applications in the world of computer vision, such as autonomous vehicles,
medical imaging, and object detection with higher levels of precision. Which makes it an important
task to explore and understand.

The dataset that we are going to be using is the PASCAL VOC-2007 dataset. This dataset is a
collection of images that are labeled with 20 different classes (21 including the background class). It

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

is also split into 2 sets, the training set and the validation set. The training set contains (insert number
images) and the validation set contains (insert number images). The labels that were given for the
images are in the form of a mask, where each pixel in the mask is labeled with a specific class, which
essentially outlines the object in the image.

Some background other background that one might want to know is some general knowledge on
CNNs. CNNs are a type of neural network that are mainly used for image classification problems,
but can also be used for other tasks such as object detection, and semantic segmentation. CNNS are
made of layers which are called Convolutional Layers, which extract information of the image by
passing a filter over the image and applying a convolution operation. Which looks like

(f ∗ g)(x, y) =
m−1∑
i=0

n−1∑
j=0

f(i, j)g(x− i, y − j) (1)

Where f is the filter, g is the image, and m and n are the dimensions of the filter. The output of
the convolution operation is what we call a feature map which is usually then batch normalized and
passed through an activation function.

Another typical part of CNNs are a pooling layer, which is used to reduce the spatial dimensions of
the feature map, and reduce the number of parameters in the network to reduce the risk of overfitting
and generalize the model better. This is done by taking a window (kernel) of size n and taking the
maximum value in the window and using that as the output of the pooling layer.

The last part of a CNN is the fully connected layer, which is used to take the features that were
extracted from the convolutional layers and use them to classify the image. This is done by taking
the features and passing them through a series of fully connected layers (basically a regular neural
network), which are then passed through an output layer which predicts the class of the image. In
this project we are using a softmax layer as the output layer, which is generally used for multi-class
classification problems such as this one.

1.1 Weights Initialization Method

For the weights initialization, for this project we are going to use the Xavier initialization. The Xavier
Initialization basically sets a values initialized weights from a random uniform distribution between
the bounds given by the following equation:

±
√
6√

nin + nout
(2)

nin or another word for it is the "fan-in", is the number of incoming network connections that are
coming from the neural network. And the nout or also known as "fan-out" is the number of outgoing
network connections from a given layer.

This initialization method is used to prevent the vanishing or exploding gradient problem that would
normally occur when using a random initialization method on networks with a large number of layers,
as it maintains the variance of the activations throughout the forward pass of the network and the
backward pass of the network. The reason it is able to maintain the variance of the activations is
because the Xavier initialization is able to set the weights to be initialized in a way that the variance
of the activations is the same as the variance of the inputs. This is important because if the variance
of the activations is not the same as the variance of the inputs, then the activations will either explode
or vanish as the network goes through the forward pass and the backward pass, and as the Xavier
initialization takes into account the number of incoming and outgoing connections, it is able to
maintain the variance of the activations throughout the network.

1.2 Batch Normalization

For training the ‘baseline‘ and ‘improved baseline’ neural network we will also used batch normaliza-
tion. This is to improve the speed, performance and stability of the neural network. It does so by first
normalizing the each input in the input channel as follows:

x̂i =
xi − µβ√
σ2
β + ϵ

(3)

2

Where xi is a mini-batch of inputs, µβ is the mini-batch mean, σ2
β is the mini-batch variance, and ϵ is

a small constant to prevent division by zero, i.e to provide numerical stability. After that, we then do
a scale and shift of the normalized input as follows:

yi = γx̂i + β (4)

Where γ and β are learnable parameters. This is done so that if the model determines that the
unnormalized values are better for the given task it can undo the normalization.

Batch normalization improves the speed of convergence by reducing the internal covariate shift,
changing the distribution of the weights of the network activations that come from activation pa-
rameters, reducing sensitivity of the model and allow it to converge faster. It also improves the
performance of the model by allowing the use of higher learning rates, which in turn allows the
model to converge faster. It also improves the stability of the model by reducing the sensitivity of the
model to the initialization of the weights, and it also acts as a regularizer, which reduces the need for
dropou‘t and L2 regularization.

2 Related Work

Some related work that we had read for insight and inspiration for our approach towards the segmen-
tation task are below and we have different sources for different parts of the project.

2.1 ResNet-Transfer Learning

Pytorch ResNet-50 Transfer Learning, This website was used to determine and figure out how to use
the ResNet-50 model from pytorch for transfer learning.

2.2 U-Net

Ronneberger et al. [2015] was used to determine the architecture for the U-Net as, it is the original
paper that introduced the U-Net architecture.

3 Evaluation Metrics

3.1 Intersection over Union (IoU)

IoU =
TP

TP + FP + FN
(5)

We use the Intersection over Union (IoU) as a metric to evaluate the performance of our semantic
segmentation model. The IoU is a measure of the overlap between the predicted segmentation and
the ground truth segmentation. It is calculated by dividing the area of overlap between the predicted
and ground truth segmentations by the area of union between the two segmentations. The IoU ranges
from 0 to 1, with 1 indicating perfect overlap and 0 indicating no overlap.

3.2 Pixel Accuracy

Pixel Accuracy =
Number of correct pixels
Total number of pixels

(6)

Pixel accuracy is another metric that we use to evaluate the performance of our semantic segmentation
model. It measures the proportion of correctly classified pixels in the predicted segmentation. This
can be influenced by the class imbalance in the dataset, and is especially influenced by background
pixels as they are the most common class.

3.3 Cross Entropy Loss

Cross Entropy Loss = − 1

N

∑
i = 1N

∑
c = 1Cyi, c log(pi, c) (7)

3

https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/

The cross entropy loss is a measure of the difference between the predicted and ground truth
segmentations. It is calculated by taking the negative log likelihood of the predicted segmentation
given the ground truth segmentation. We use this as the model’s training criterion for back propagation
to update the model’s weights.

4 Methodology

4.1 Baseline Fully Convolutional Network

4.1.1 Loss Criterion

For the lost criterion, we used the cross-entropy loss function torch.nn.CrossEntropyLoss().
As this loss function is commonly used for multi-class classification problems, which is applicable to
our semantic segmentation task. More on the loss function can be found in the Loss Criterion section.

4.1.2 Optimizer

For the Optimizer we used the Adam optimizer which in PyTorch is torch.optim.Adam(). We
chose this optimizer as it is a popular choice for training deep learning models and is known to be
robust and efficient. The hyperparameters for the optimizer were a learning rate of 1e4, a weight
decay of 1e5.

4.1.3 Training

For the training on the baseline model we used a simple basic FCN architecture which can seen in
Appendix Here. We trained the model with 500 epochs with an early stopping of 30 epochs. The
learning rate we used was 1e−4 and the weight decay was 1e−5. We also used a batch size of 16.
Most of the models stopped training before the 500 epoch as the early stopping was implemented by
looking at the IoU and if it did not improve for 30 epochs then the model would stop training.

4.2 Improvements on Baseline Model

4.2.1 Cosine Annealing Learning Rate

We first attempted to optimize the performance of our baseline model by implementing the cosine
annealing learning rate scheduler from PyTorch. This helps to dynamically adjust the learning rate
during training at each epoch to achieve better generalization and converge to a better solution. To do
this, we utilized PyTorch library and incorporated CosineAnnealingLR scheduler. This scheduler
resets the learning rate at each epoch, adhering to a cosine annealing schedule. The formula for the
learning rate at each iteration t in a cycle of length Tmax is given by:

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
tπ

Tmax

))
Here:

• ηt is the learning rate at iteration t,
• ηmin is the minimum learning rate,
• ηmax is the maximum learning rate,
• Tmax is the number of iterations in one cycle.

We used parameters T_max, the number of iterations after which the learning rate reaches its
minimum, to 10, and eta_min, the lower bound of the learning rate, as 0.001.

4.2.2 Data Augmentation(Transforms)

In our segmentation, we employ random transformations as a data augmentation strategy to enhance
the diversity and richness of the training dataset. This process, which includes random horizontal
flipping and random resized cropping, is applied to both the input images and their corresponding

4

masks during the preprocessing phase. The horizontal flipping, executed with a 50 percent probability,
effectively doubles the training data variability by presenting mirrored versions of each image-mask
pair. This ensures the model learns features that are invariant to the orientation of the objects within
the images. Subsequently, the random resized cropping introduces further variability by randomly
altering the scale, aspect ratio, and the portion of the scene captured in each crop, followed by resizing
to maintain consistent input dimensions for the model.

This augmentation technique is crucial for simulating real-world variability in image data, thereby
enhancing the model’s ability to generalize from the training set to unseen data. By training on images
that have been augmented to include a wide range of orientations, scales, and scene compositions,
the model becomes more robust and capable of accurately interpreting a variety of real-world
scenes. These transformations are applied at each epoch, ensuring that the model is exposed to
wide variations of each image throughout the training process. This increases the effective size of
the training dataset without the need for additional data, aiding in the prevention of overfitting and
improving generalization.

The code for the data augmentation can be found in the Appendix Here.

4.2.3 Class Imbalance

Another way we tried to improve our baseline model was by implementing a weighted loss criterion
because the mask of the training images are mostly black from the background, so the model would
be more biased to predict the background label. Therefore, the standard cross-entropy loss function is
edited to be able to assign lower weights to frequently seen classes and vice versa, which fixed the
imbalanced classes issue. This was achieved by firstly implementing a function getClassWeights()
which is defined here, that takes in the training dataset. In this function, the training dataset is iterated
over to be able to count the occurrences of each class, which is stored in a tensor of length 21,
which is the number of classes. This function then calculates each class’s weights by dividing the
total number of samples in the dataset by the count of samples for each class. Then, the function
normalizes the class weights to sum up to 1, so the class weights are normalized probabilities. Lastly,
these normalized class weights are outputted as a Torch tensor, which is used as the weight parameter
for torch.nn.CrossEntropyLoss().

5 Experiments with other architectures

5.1 Custom FCN Architecture

The SimplifiedUNet network is a miniature version of the U-Net architecture. The encoder section
comprises three convolutional layers with ReLU activation functions, responsible for feature extrac-
tion from the input image. After each convolutional layer, downsampling operations in the form of
max-pooling are applied to reduce the spatial dimensions of the feature maps while increasing the
number of channels. Each convolutional layer in the encoder and decoder sections is followed by
ReLU activation. This simplified architecture offers a balance between computational efficiency and
segmentation accuracy, making it suitable for various image analysis applications.

5.2 ResNet-50

We utilized transfer learning with the ResNet50 architecture, pretrained on ImageNet, to develop
a semantic segmentation model. The ResNet50 backbone serves as a feature extractor, capturing
high-level features from the input images. We removed the final fully connected layer of the ResNet50
model to retain the convolutional feature extractor. After extracting features, we appended decoder
layers to the network for segmentation. The decoder consists of convolutional and transposed
convolutional layers to upsample the features and refine the segmentation output. Additionally,
batch normalization layers were applied after each convolutional layer to stabilize and accelerate the
training process. The resulting model is capable of semantic segmentation tasks, where it maps input
images to pixel-level class predictions.

5

sec:data_augmentation_code
sec:weight_imbalanced_code

Layer In Channels Out Channels Kernel Stride Padding Activation

enc_conv1 3 64 3 1 1 ReLU

enc_conv2 64 128 3 1 1 ReLU

enc_conv3 128 256 3 1 1 ReLU

bottleneck_conv 256 512 3 1 1 ReLU

dec_upconv1 512 256 2 2 0 ReLU

dec_conv1 256 256 3 1 1 ReLU

dec_upconv2 256 128 2 2 0 ReLU

dec_conv2 128 128 3 1 1 ReLU

dec_upconv3 128 64 2 2 0 ReLU

dec_conv3 64 64 3 1 1 ReLU

final_conv 64 21 1 1 0 -
Table 1: Simplified UNet Architecture

Layer In Channels Out Channels Kernel Stride Padding Activation

backbone - - - - - -

conv1 2048 1024 1 - - ReLU

conv2 1024 512 1 - - ReLU

deconv1 512 256 3 2 1 ReLU

deconv2 256 128 3 2 1 ReLU

deconv3 128 64 3 2 1 ReLU

bn1 - - - - - BatchNorm2d

deconv4 64 64 3 2 1 ReLU

bn2 - - - - - BatchNorm2d

classifier 64 21 1 - - -
Table 2: FCN Decoder Layers with ResNet50 Backbone

5.3 U-Net

For the U-Net we tried to implement the architecture as seen in the paper Ronneberger et al. [2015]
which has the following layers/architectures that can be seen in U-net arch and image for the
architecture can be seen in U-net arch. After every convolution, before the activation function is
applied, we also performed a batch normalization using the pytorch torch.nn.BatchNorm2d to
improve the training and generalization of the network. In addition to that we also implemented the
crop and copy functionality from the original paper which the code for the crop and copy functionality
can be seen in U-net crop and copy.

6

Layer In Channels Out Channels Kernel Stride Padding Activation

Conv11 3 64 3 1 1 ReLU

Conv1 64 64 3 1 1 ReLU

MaxPool1 - - 2 2 0 -

Conv21 64 128 3 1 1 ReLU

Conv2 128 128 3 1 1 ReLU

MaxPool2 - - 2 2 0 -

Conv31 128 256 3 1 1 ReLU

Conv3 256 256 3 1 1 ReLU

MaxPool3 - - 2 2 0 -

Conv41 256 512 3 1 1 ReLU

Conv4 512 512 3 1 1 ReLU

MaxPool4 - - 2 2 0 -

Bottleneck1 512 1024 3 1 1 ReLU

Bottleneck2 1024 1024 3 1 1 ReLU

ConvTransposed1 1024 512 2 2 0 ReLU

upConv11 1024 512 3 1 1 ReLU

upConv12 512 512 3 1 1 ReLU

ConvTransposed2 512 256 2 2 0 ReLU

upConv21 512 256 3 1 1 ReLU

upConv22 256 256 3 1 1 ReLU

ConvTransposed3 256 128 2 2 0 ReLU

upConv31 256 128 3 1 1 ReLU

upConv32 128 128 3 1 1 ReLU

ConvTransposed4 128 64 2 2 0 ReLU

upConv41 128 64 3 1 1 ReLU

upConv42 64 64 3 1 1 ReLU

softmax 64 21 1 1 0 -
Table 3: U-Net Architecture

6 Results

All the models are trained with on 500 epochs and with an early stopping of 30 which is based on the
IoU score on the validation set.

For all the following visualizations, they will all be tested on the image below which is from the test
set which is here.

6.1 Baseline Fully Convolutional Network

For the baseline model, we trained the model with a learning rate of 1e−4 and a batch size of 16.
It achieved a pixel accuracy of 0.704 and an IoU of 0.055 on the validation set, which as it is just
a baseline, it only predicts black masks for all the images. Due to the fact that black is the most

7

Figure 1: Test Image

common class in the mask. But it serves as a good starting point for us to improve upon for this
complex task.

The plots for the train and validation loss are, here. And for the visualizations of the predicted mask,
the actual mask and the actual mask over the predicted mask are here.

Figure 2: Baseline Model Training/Validation Loss

6.2 Improvements on Baseline Model (Cosine Annealing Learning Rate)

Using the same learning rate and batch size as the baseline model, we added the cosine annealing
learning rate scheduler to the model. The model achieved an IoU of 0.0612 and a pixel accuracy of
0.704 on the validation set. The plots for the train and validation loss are, here. The visualizations of
the predicted mask, the actual mask and the actual mask over the predicted mask are here.

8

(a) Baseline Model Prediction Mask (b) Baseline Model Over Actual Mask

Figure 4: Cosine Annealing Learning Rate Model Training/Validation Loss

(a) CosineAnnealingLR Model Prediction Mask (b) CosineAnnealingLR Model Over Actual Mask

9

6.3 Improvements on Baseline Model (Data Augmentation)

Using the same learning rate and batch size as the baseline model, we added data augmentation and
CosineAnnealingLR to the model. The model achieved an IoU of 0.0321 and a pixel accuracy of
0.704 on the validation set. The plots for the train and validation loss are, here.

Figure 6: Data Augmentation Model Training/Validation Loss

(a) Data Augmentation Model Prediction Mask (b) Data Augmentation Model Over Actual Mask

6.4 Improvements on Baseline Model (Class Imbalance)

The last improvement we made to the baseline model was to implement a weighted loss criterion to
fix the imbalanced classes issue. Using the same learning rate and batch size as the baseline model,
we added the weighted loss criterion to the model. The model achieved an IoU of 0.0274 and a pixel
accuracy of 0.529, The plots for the train and validation loss are, here. The visualizations of the
predicted mask, the actual mask and the actual mask over the predicted mask are here.

6.5 Custom FCN Architecture

Using the same learning rate and batch size as the models from question 4, we trained the Simpli-
fiedUNet model. Which achieved an IoU of 0.0383 and a pixel accuracy of 0.751 on the validation
set. The plots for the train and validation loss are, here. The visualizations of the predicted mask, the
actual mask and the actual mask over the predicted mask are here.

10

Figure 8: Weighted Loss Criterion Model Training/Validation Loss

(a) Weighted Loss Criterion Model Prediction
Mask

(b) Weighted Loss Criterion Model Over Actual
Mask

Figure 10: Simplified UNet Model Training/Validation Loss

6.6 ResNet-50

Using the same learning rate and batch size as the models from question 4, we used a pretrained
model from pytorch which was the resnet50 model. The model achieved an IoU of 0.157 and a pixel

11

(a) Simplified UNet Model Prediction Mask (b) Simplified UNet Model Over Actual Mask

accuracy of 0.824 on the validation set. The plots for the train and validation loss are, here. The
visualizations of the predicted mask, the actual mask and the actual mask over the predicted mask are
here.

Figure 12: ResNet-50 Model Training/Validation Loss

(a) ResNet-50 Model Prediction Mask (b) ResNet-50 Model Over Actual Mask

6.7 U-Net

For the U-Net model, we trained using the same learning rate and batch size as the models from
question 4. The model achieved an IoU of 0.0358 and a pixel accuracy of 0.751 on the validation
set. The plots for the train and validation loss are, here. The visualizations of the predicted mask, the
actual mask and the actual mask over the predicted mask are here.

We did however, have a better run with the U-Net with the exact same parameters on a previous run,
but for some reason we are unable to replicate the same results, we did not record down the IoU but

12

Figure 14: U-Net Model Training/Validation Loss

(a) U-Net Model Prediction Mask (b) U-Net Model Over Actual Mask

we have the image you see below which is the best run we had with the U-Net model as it was able to
make the outline of the bird in the image.

13

Figure 16: U-Net Model Best Run Prediction Mask

7 Discussion

7.1 Baseline Fully Convolutional Network

In our baseline implementation, many decisions were made regarding loss criterion, learning rate, and
model architecture. For instance, using Cross Entropy Loss as the loss function was utilized for our
task due to its appropriateness for multi-class classification problems, such as semantic segmentation
on diverse object categories. Additionally, using FCN architecture and Xavier initialization addressed
the challenge of weight initialization in deep neural networks, such as preventing vanishing or
exploding gradients and balancing between the weight’s scale and input’s data scale. This allows us
to have a more stable training process to use as a foundation for experimentation and improvements
later. As a result, our IoU and accuracy were somewhat decent with our baseline detecting the general
location of some objects in the images. For instance, in our example image, our baseline was able to
identify the woman as human and located the general location of her head and hand.

However, given it’s a baseline model, there are many drawbacks. For one, the absence of a learning
rate schedule poses as a limitation due to unpredictable and suboptimal convergence dynamics.
Furthermore, we did not implement class imbalance which is critical for segmentation. When classes
are imbalanced, that class or some classes may dominate the image, while some other classes make
up only a small portion of the image. This means the network can reduce the error considerably just
by labeling everything with the majority class. Consequently, our IoU and accuracy were relatively
low. As seen in the example image, our baseline was only able to classify the human and no other
object, labeling the rest as background. Additionally, the overall shape of the human was generally
vague and indistinguishable.

14

7.2 Improvements on Baseline Model

Several key approaches were made to improve the overall model of the performance, including
cosine annealing learning rate scheduler, applying transformations to the input images and labels, and
addressing the rare class/imbalanced class problem. Firstly, implementing cosine annealing improved
the convergence by dynamically adjusting the learning rate during training, speeding convergence and
avoiding overshooting or getting stuck in high-loss regions. Additionally, including transformers in
the architecture and randomizing them prevents overfitting, especially where contextual information
may play a role. Addressing the class imbalance problem prevents the model from exhibiting bias
toward dominant classes, encouraging the model to correctly classify minority classes and generalize
better results.

However, with fine-tuning to the baseline model comes with problems such as hyperparameter
sensitivity . Both cosine annealing and class balancing involve hyperparameters that require tuning
such as T_max and eta_min in cosine annealing and our current choices may not be effective for our
training process. Furthermore, class balancing can be sensitive to the choice of class weights and
suboptimal weights may not fully address the class imbalance issue. As a result of these improvements
and their drawbacks, our IoU and pixel accuracy increased but not as substantially as we expected.
From the example image, you can see that the model was able to correctly classify the woman as
human and with more precision than the base model, but the model still was only able to detect one
type of object.

7.3 Expirements with other architectures

In our experimentation models (simplified UNET, Transfer Learning with a ResNet Encoder, UNET),
there were improvements from the improved baseline model. We reused all of the improvements
we created in question 4 in all of the models above, and we used the same parameters (ie learning
rate, weight initialization) as before. These models improved our performance from the last section.
Using transfer learning with a ResNet34 encoder to improve an FCN architecture made performance
better because this type of model has better feature extraction in the encoder due to ResNet34 being
pretraining on ImageNet, which provides a regularization effect. Also, it leads to a faster initial
convergence, for it only trains the decoder first while leveraging pre-extracted features. UNET
improves performance compared to an FCN because in the UNET decoder, the encoder provides
a large number of feature channels to each upsampled layer, so the model is able to maintain
contextual information in these channels. Furthermore, UNET has more precise and spatially
coherent segmentations due to the architecture consisting of a contracting path to capture context and
a symmetric expanding path that enables precise localization.

However, as seen on the graphs, UNET did not perform exactly the way we wanted it to. When we
tried to train UNET with our current python file, it quickly converges and produces a completely
black mask, but in one run before, we had one to perfectly trace out every object of the image, but
classifying all of it wrong. UNET works better with HE weight initializations, but we used the
Xavier weight initializations, which may have caused it to converge to a black mask most of our runs.
Even though it had satisfactory, using transfer learning with a ResNet34 encoder into an FCN did
come with some consequences. Specifically, the ResNet34 encoder has significantly more layers and
latency compared to a simple fully convolutional encoder because it is a large encoder, so it lead to a
longer training time as shown by the number of epochs.

7.4 IoU Implementation difference

We tested the training with an initially unmodified IoU which would take the entire image class IoU
by each individual image in the batch. This produced a good baseline IoU of 0.05, and changed
increasingly with our different improvements up to an IoU of 0.075 at the end. However, we found
this method of storing the best models ineffective, as the visualizations we were seeing were at most
times either completely black or noisy.

After changing our IoU to not producing the means per image, but instead first individually averaging
over by the class for all images in the batch, then only aggregated to a total mean, we find that this
metric, despite having obviously lower values, was able to qualitatively produce better visualizations
observed in the returned image masks. Because of this, our IoUs are seemingly small, but their
associated best models perform observably better. This is reflected in our transfer training with

15

ResNet50 which was our best performing model, achieving a mean IoU of 0.157 even with this new
metric.

16

8 Best Model

From all the models that we trained above, the best performing model that we got was the ResNet-50
model. It achieved an IoU of 0.157 and a pixel accuracy of 0.824 on the validation set.

Here are some plots and example on other images that worked extremely well with the ResNet-50
model.

(a) Boat Prediction Mask (b) Boat Over Actual Mask

(c) Dinning Table Prediction Mask (d) Dinning Table Over Actual Mask

(e) Cat Prediction Mask (f) Cat Over Actual Mask

17

(a) Cow Prediction Mask (b) Cow Over Actual Mask

(c) Motorbike Prediction Mask (d) Motorbike Over Actual Mask

(e) Miscelanous Prediction Mask (f) Miscelanous Over Actual Mask

(g) Plane Prediction Mask (h) Plane Over Actual Mask

9 Contributions

9.1 Jack

We all worked together for the most part of the PA, but I was in charge with Vivian for the U-net
model code, and the weights imbalanced code. I also worked a lot of the report since I had the most
experience with Latex, and offline, I also did a lot of debugging in my own time for our group as a

18

Figure 19: U-Net Architecture

world in order to make sure that the models were working correctly. E.g I found a bug in the IoU
implementation that was making our best model selection incorrect.

Overall I think we all contributed equally to the project, and we all worked together to make sure that
we were all on the same page and that we were all working on the same thing.

9.2 Hou

Hou pair-programmed with Elsie in implementing the util.py file and baseline model for train.py.
He applied transformers (4b) and worked with Elsie on implementing a custom architecture and
ResNet50 (5a and 5b). In the report, he wrote the Abstract, Data Augmentation, UNet, Accuracy/IoU,
and created some of the tables and images shown.

9.3 Elsie

Elsie pair-programmed with Hou in implementing the util.py file and baseline model for train.py. She
implemented cosine annealing (4a) and worked with Hou on implementing a custom architecture
and ResNet50 (5a and 5b). In the report, she wrote Cosine Annealing, ResNet50, and Q3 and Q4
subsection of the Discussion section.

9.4 Vivian

Vivian pair-programmed with Jack in implementing 4c and 5c and wrote the README.md. She
assisted with debugging mostly the IOU function and the plot function. In the report, she wrote the
Imbalanced Class Problem and Q5 of the discussion section.

References

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015.

19

A Appendix

A.1 U-Net Architecture

A.2 U-Net Crop and Copy Functionality

def crop(self, source, target):
target_size = target.size()[2:]
source_size = source.size()[2:]

delta = [(s - t) // 2 for s, t in zip(source_size, target_size)]
return source[:, :, delta[0]:source_size[0] - delta[0], delta[1]:source_size[1] - delta[1]]

and during the decoder, we used the crop and copy function as follows:

up_pool1 = self.up_pool1(bottleneck)
if self.cropb:

up_pool1_cropped = self.crop(conv4, up_pool1)
concat1 = torch.cat((up_pool1, up_pool1_cropped), 1)

up_conv11 = self.relu(self.bn_up_conv1(self.up_conv11(concat1)))
up_conv1 = self.relu(self.bn_up_conv1(self.up_conv1(up_conv11)))

A.3 Weight imbalanced code

def getClassWeights(dataset):
"""
Calculate the class weights for a given dataset to handle class imbalance.

Parameters:
dataset (torch.utils.data.Dataset): The dataset containing the samples and labels.

Returns:
torch.Tensor: The class weights for each class in the dataset, inversely proportional to class frequencies.
"""
class_counts = torch.zeros(21, dtype=torch.long)
for _, label in dataset:

label = label.long() # Ensure label is of type torch.long for bincount
class_counts += torch.bincount(label.view(-1), minlength=21)

Avoid division by zero for classes not present in the dataset
class_counts[class_counts == 0] = 1

total_samples = class_counts.sum().float()
class_weights = total_samples / class_counts

Normalize weights to sum to 1, if desired (optional, depending on use case)
class_weights /= class_weights.sum()

A.4 Data Augmentation Code

class CommonTransforms:
"""
A class that defines common image transformations.

Args:
size (tuple): The desired size of the transformed image. Default is (224, 224).

"""

20

def __init__(self, size=(224, 224)):
self.size = size
self.mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

def __call__(self, img, mask):
"""
Applies common image transformations to the input image and mask.

Args:
img (PIL.Image.Image): The input image.
mask (PIL.Image.Image): The input mask.

Returns:
tuple: A tuple containing the transformed image and mask.

"""
Random horizontal flip with the same decision for both img and mask
if random.random() > 0.5:

img = F.hflip(img)
mask = F.hflip(mask)

Random resized crop with the same parameters for both img and mask
i, j, h, w = transforms.RandomResizedCrop.get_params(img, scale=(0.08, 1.0), ratio=(3./4., 4./3.))
img = F.resized_crop(img, i, j, h, w, self.size, InterpolationMode.BILINEAR)
mask = F.resized_crop(mask, i, j, h, w, self.size, InterpolationMode.NEAREST)

Convert images to tensors without normalization
img = standard_transforms.functional.to_tensor(img)
Normalize image using mean and standard deviation
img = standard_transforms.functional.normalize(img, *self.mean_std)

Convert mask to tensor with long dtype and handle values of 255
mask = torch.as_tensor(np.array(mask), dtype=torch.long)
mask[mask == 255] = 0

return img, mask

21

	Introduction
	Weights Initialization Method
	Batch Normalization

	Related Work
	ResNet-Transfer Learning
	U-Net

	Evaluation Metrics
	Intersection over Union (IoU)
	Pixel Accuracy
	Cross Entropy Loss

	Methodology
	Baseline Fully Convolutional Network
	Loss Criterion
	Optimizer
	Training

	Improvements on Baseline Model
	Cosine Annealing Learning Rate
	Data Augmentation(Transforms)
	Class Imbalance

	Experiments with other architectures
	Custom FCN Architecture
	ResNet-50
	U-Net

	Results
	Baseline Fully Convolutional Network
	Improvements on Baseline Model (Cosine Annealing Learning Rate)
	Improvements on Baseline Model (Data Augmentation)
	Improvements on Baseline Model (Class Imbalance)
	Custom FCN Architecture
	ResNet-50
	U-Net

	Discussion
	Baseline Fully Convolutional Network
	Improvements on Baseline Model
	Expirements with other architectures
	IoU Implementation difference

	Best Model
	Contributions
	Jack
	Hou
	Elsie
	Vivian

	Appendix
	U-Net Architecture
	U-Net Crop and Copy Functionality
	Weight imbalanced code
	Data Augmentation Code

