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Abstract

Recently, transformers have achieved remarkable performance in many different
tasks. In this paper, we use a pre-trained BERT (Bidirectional Encoder Repre-
sentations from Transformers) model for user intent classification. For training
and evaluation, we utilize the Amazon MASSIVE dataset, which encompasses
diverse languages and intents. Our approach involves fine-tuning the BERT model,
followed by the incorporation of advanced training methods, and employing con-
trastive learning to assess model performance. The results reveal significant im-
provements with the application of advanced techniques. With the baseline model,
before and after fine-tuning the BERT model, we achieve a modest accuracy of
around 1%. However, by incorporating the first advanced technique of warm-up
steps, we see a substantial increase in test set accuracy to 86.55%. The combination
of two techniques further enhances this to 86.75%. Notably, contrastive learning
methods such as SupCon and SimCLR yield impressive accuracies of 81.41%
and 87.73% respectively, demonstrating their effectiveness in improving model
performance. This demonstrates the robustness and versatility of our approach in
enhancing user intent classification and also contributing valuable insights into the
application of advanced training techniques and contrastive learning for further
advancements in natural language understanding.

1 Introduction

Recent advancements in natural language processing have witnessed the remarkable success of
transformer-based models, achieving promising performance across a diverse range of tasks. In
this paper, our focus is on using a pre-trained BERT (Bidirectional Encoder Representations from
Transformers) model for the purpose of classifying user intent. Our methodology starts with the
fine-tuning of the BERT model to establish a solid baseline. Next, we employ a range of training
techniques derived from insights found in a blog to construct a customized model tailored to our
specific task. Finally, our investigation will extend to training models using contrastive losses, delving
into advanced strategies for enhancing model performance.

1.1 BERT
For our paper, we fine-tuned a basic BERT model, a bidirectional transformer designed to pre-train

deep bi-directional representations from a combination of masked language modeling objective and
next sentence prediction on a large corpus comprising the Toronto Book Corpus and Wikipedia
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[Devlin et al.,[2018]. The model variation we used is the English uncased model which changes input
text to lowercase and strips out accent markers. The model is primarily aimed to be fine-tuned on
texts on tasks such as token classification, making decisions, or question answering. This makes the
model suitable classifying user intent.

1.2 Dataset

The dataset used to train our model is the Amazon MASSIVE intent dataset[FitzGerald et al.,[2022].
It consists of 1 million examples of realistic, human-created virtual assistant utterance text spanning
51 languages, 60 intents, 55 slot types, and 18 domains. For classification tasks (except for 3.3
Contrastive Learning), the input to the model is the text and the output is the user intent label. For
instance, with the input text "wake me up at nine am on friday", the user intent label of this text is 48
(alarm_set).

The paper that introduced this dataset [FitzGerald et al.|[2022] highlighted the need for the need for
evaluation datasets for specific tasks to keep up with the growing number and size of large language
models like BERT. Additionally, despite the rise and advancement of virtual assistants, they only
support a small number of the world’s 7,000+ languages. Thus, the MASSIVE dataset was created
with the aim of providing labeled data for training and evaluation, particularly data that is realistic for
the task and is natural for each given language. With this paper, we hope to utilize the MASSIVE
dataset to advance the linguistic analysis of intent classification on BERT and provide insight into
improving virtual assistants by using a larger and newer dataset and employing various methods.

2 Related Work

Many papers have cited this dataset for fine-tuning and evaluation performance. For instance, one
paper used the dataset to fine-tune a data generation method called Language model INstruction tuning
to Generate annotated Utterances for Intent classification and Slot tagging (LINGUIST) [Rosenbaum
et al.l 2022]. LINGUIST generates annotated data for Intent Classification and Slot Tagging by
fine-tuning AlexaTM 5b, a 5-billion-parameter multilingual sequence-to-sequence (seq2seq2) model.
The MASSIVE dataset, given its large range of languages and intents/slots, was used as training
to demonstrate the cross-domain adaption capabilities of LINGUIST, including cross-lingual and
cross-schema transfer. Training on this dataset improved the ST F1 score, seeing a particularly large
improvement for Japanese.

Another paper used a subset of this dataset in Russian to evaluate model performance on multilingual
BERT models [Karpov and Burtsev, |2023|]. The article explores the effectiveness of knowledge
transfer from the RuQTopics dataset, a comprehensive Russian topical dataset. Russian-only models
trained on this dataset consistently achieved an accuracy of around 85% on a subset matching the
Russian MASSIVE classes. The findings revealed a strong correlation between model accuracy and
the approximate size of BERT’s pretraining data for each language, emphasizing the significance of
training sample size in multilingual models.

To fine-tune our model, we took inspiration from the Medium blog post, "Advanced Techniques for
Fine-tuning Transformers", which proposes advanced training techniques for fine-tuning Transformers
such as BERT [Changl |2021]]. The author used the same model and dataset and compared the mean
RMSE of many techniques: layer-wise learning rate decay (LLRD), warm-up steps to a learning
rate schedule, re-initializing pre-trained layers, Stochastic Weight Averaging (SWA), and frequent
evaluation. The author found improvements in results for all techniques, with a combination of all
techniques performing the best. For our paper, we used a combination of two techniques, warm-up
steps and re-initializing pre-trained layers.

For Contrastive Learning, we took inspiration from the Supervised Contrastive Learning paper’s
[Khosla et al.,|2020]] contents for our training pipeline that uses contrastive learning on sentences for
the intent classification. The article itself explores extening self-supervised batch contrastive learning
to a fully-supervised setting, effectively utilizing label information. The supervised contrastive
(SupCon) loss was used, achieving a top-1 accuracy of 81.4% on ImageNet dataset using ResNet-200
and outperforming cross-entropy on various datasets. We also looked at SimCSE paper [|Gao et al.}
2021]] and used their findings of augmentation via hidden dropout to generate similar pairs of inputs
for natural language data. The article introduced SimCSE, a contrastive learning framework that



predicts the input sentence istelf in a contrastive object, utilizing standard dropout as minimal data
augmentation. It incorporated annotated pairs, and evaluation on semantic textual similarity tasks
using BERTbase showed an average Spearman’s correlation of 76.3% and 81/6%, demonstrating its
effectiveness.

3 Methods

3.1 Baseline Model

For our baseline model, we used a basic pre-trained BERT architecture to train our data. The hidden
layer dimension, set at 10, corresponds to the number of attention heads in multi-head attention
mechanisms within BERT. The embedding dimension, fixed at 768, represents the size of hidden
states and output of attention layers. Training was conducted for a single epoch. Furthermore, we
used a batch size of 16, a learning rate of le-4, and a dropout rate of 0.1. For our optimizer, the Adam
optimizer was utilized for its adaptive learning rate capabilities, which help in converging faster and
more effectively compared to standard Stochastic Gradient Descent. For loss, we used cross entropy
due to its effectiveness in classification tasks, including classifying user intent, where the task can be
considered classification over the vocabulary.

3.2 Custom Fine-tuning Model

For our custom fine-tuned model, we implemented a linear scheduler with applied warm-up steps
and re-initialized pre-trained layers. Instead of using the StepLR scheduler from the baseline model,
we use a learning rate scheduler that uses the ‘get_linear_schedule_with_warmup* function with
50 warm-up steps. This type of scheduler is used when training neural networks with a warm-up
phase, which allows the model to start with a low learning rate and eventually increase it during
the initial training steps. The linear schedule means the learning rate increases linearly during the
warm-up phase and decreases linearly during the later remaining training steps. We also re-initialized
4 pre-trained layers, and this discards some of the weights from the model’s pre-trained weights and
re-initializes them during the training process, which is supposed to cause better fine-tuning results.
Other than these two changes, we mostly used the same hyperparameters and settings as the baseline
model.

3.3 Contrastive Models

For our contrastive models, we used the SupCon loss from the SupCon loss paper’s [Khosla et al.|
2020] repository. The normal training of the classifier is preceded by a contrastive training loop
which aims to take two different augmentations of the same input and pushes similar inputs together,
and dissimilar inputs away in embedding space. Two models are trained, one with SupCon which
is a supervised method of training, and the other with SimCLR which is an unsupervised method.
Once this is done, the layers used for contrastive training are frozen, then a linear classifier is trained
for downstream classification. We opted to omit a scheduler from the contrastive training steps due
to achieving worse performance with it, and used the AdamW optimizer to train the model. The
downstream classification uses similar methodology to our custom fine-tuning model, employing a
StepLR scheduler with warmup steps.

4 Results

4.1 Test Loss and Accuracies
4.2 Train and Validation Accuracy

All training and validation accuracy will be taken from the 10th epoch for each training example.



exp idx exp loss accuracy
1 Test set Before Fine Tuning 765.9042  0.0098
2 Test set After Fine Tuning ~ 755.6769  0.0148
3 Test set with 15¢ technique  176.5817  0.8655
4 Test set with 2" technique ~ 757.8145  0.0138
5 Test set with 2 Techniques ~ 192.5612  0.8675
6 Test Set with SupContrast 32.2872 0.8141
7 Test Set with SlimCLR 9.9618 0.8773
Table 1: Table for test set experiments

Model Exp Train Accuracy  Validation Accuracy

Baseline Before Fine Tuning 0.0127 0.0103

Baseline After Fine Tuning 0.0107 0.0128
Advanced Techniques Model ~ with 15 technique 0.9944 0.9966
Advanced Techniques Model ~ with 2"¢ technique 0.0144 0.0103
Advanced Techniques Model  with 2 Techniques 0.9806 0.9784
SupConstrast N/A 0.8173 0.9611
SlimCLR N/A 0.9865 0.9051

Table 2: Table for test set experiments

5 Discussion

5.1 Question 1

Q1: If we do not fine-tune the model, what is your expected test accuracy? And why?

A1l: We expected a low test accuracy because BERT is trained on a large dataset of unpublished
books, meant for basic English understanding. BERT is meant to be fine-tuned for downstreamed
tasks. Thus, without fine-tuning, BERT would not perform well with specific tasks such as accurately
labelling user intent. Furthermore, an optimizer is not used, which prevents the process of adjusting
the weights and biases of a neural network to minimize the loss function.

5.2 Question 2

Q2: Do results match your expectation(1 sentence)? Why or why not?

A2: These results do not match with our expectations, as we expected the model to improve
a lot then just 0.5%. I think the reason for that is because we only tried fine tuning the model by
adjusting the learning rates and using the schedulers/loss functions we deemed appropriate from
previous models such as the FCN CNN etc.

5.3 Question 3

Q3: What could you do to further improve the performance ?

A3: We were thinking of possibly more advanced techniques that are more related to the intent
model we are trying to create, and also use custom tuning techniques that are more beneficial and
related to improve the Intent Model

5.4 Question 4

Q4: Which techniques did you choose and why?

A4: Warm-up Steps and Re-initializing Pre-trained Layers. We made our scheduler a layer-wise
learning rate decay with applied warm-up steps because it helps stabilize the training process during
the initial phase. Sudden large updates to the weights during training from scratch may lead to
instability, so slowly increasing the learning rate helps the model avoid large weight updates in the
early steps. Furthermore, this method also allows helps the model initialize better. Since as described
before, warm-up steps help the model explore the parameter space more carefully in the beginning



due to the fact the weights do not increase in large amounts. As the model trains more, the learning
rate eventually increases, which allows the model to make larger updates.

We also chose to reinitialize some of the earlier layers from the Bert Model. This is because the
Bert Model was trained to perform Mask Language Modeling (MLM) and Next Sentence Prediction
(NSP) however our model that we are trying to create is an intent model, which does have similarities
in what we are trying to accomplish, but there is a sizable difference in terms of the output we are
trying to achieve. Hence, we reinitialize some layers to give it a clean slate in learning our task, while
still maintaining all the encoding and the more general and useful information from the bottom levels,
we reinitialize n of the layers closer to the output in order to fine tune and tailor our model to our task
better.

5.5 Question 5

Q5: What do you expect for the results of the individual technique vs. the two techniques
combined?

AS: We expected the 2 techniques combine to perform a lot better then with just one of the
individual techniques. As in a way, both techniques help to improve the already trained model, by
improving the models ability to determine intent based of the input we give it.

5.6 Question 6

Q6: Do results match your expectation(1 sentence)? Why or why not?

A6: The results did not match our expectations. As incorporating the second technique gave us
a negligible improvement compared to the fine tune model. In addition, the model did not perform
any better between incorporating the first technique versus having both techniques implemented.

Some reasons, we think that is was the result are firstly, initially we thought that the output pattern/type
of the model although similar would have a sizable enough difference to where re-initializing the last
couple of layers would improve the models performance to perform the intent task. However, due
to the results that we got, there is reasonable evidence to suggest to us that the outputs are similar
enough to the point where there is close to no benefit to re-initializing the layers.

However, if we are just looking at the first technique we used which is the warm-up steps, we can
see a huge improvement between the fine tune model and the model that incorporates this technique
which is what we expected.

5.7 Question 7

Q7: What could you do to further improve the performance?

A7: Things we could further improve for the model are to maybe add additional layers on top of
the Bert model. We could also try out other special loss functions that could be better suited for the
intent task. Furthermore, we could also attempt the other techniques mentioned in the article, such as
adding a stochastic weight averaging scheduler and frequent evaluation.

5.8 Question 8

Q8: Compare the SimCLR with SupContrast. What are the similarities and differences?

AS8: The similarity between the two is that both use a contrasting loss function to pull positive
pairs close together and push negative pairs apart in embedding space, which helps learn useful
representations. The difference is that SImCLR is self-supervised while SupContrast is supervised.
SimCLR does not use label information; it instead uses two views of the same image as the positive
pair and the other images in the batch as negatives. On the other hand, SupContrast does use label
information, so it able to sample many positives per image anchor from the same class in the batch
while it treats images of different classes as negatives.

5.9 Question 9

Q9: How does SimCSE apply dropout to achieve data augmentation for NLP tasks?



A9: First, the input sentence is fed to the encoder twice with an independently sampled dropout
mask each time, which constructs two versions of the embedding for the same sentence. Then, these
two embedding are treated as a positive pair, for they are a representation of the same underlying
sentence while the differently dropped out words are treated as a minimal form of data augmentation
between the positive pair. Next, the other sentences within the mini-batch are treated as negative
instances. The contrastive loss mentioned in the last question is then used to pull positive pairs close
together and push negative pairs apart in embedding space, which helps learn useful representations.
Lastly, standard dropout noise causes the creation of slightly different views of the sentences, so this
makes enough signal for contrastive learning.

5.10 Question 10

Q10: Do the results match your expectation? Why or why not?

A10: Overall, our SimCSE results perform relatively well with SupCon having an accuracy
of 0.81 and SimCLR having an accuracy of 0.88. The accuracy of 0.88 is the highest performing
model out of all models, and is expectedly so with the upstream pretraining that brings similar inputs
together in embedding space.

However, our results do not meet our expectations in the sense that a supervised method should
expectantly perform better than an unsupervised method due to having more access to more informa-
tion. After many iterations and trials of different hyperparameters such as changes in learning rate,
schedulers and temperatures, we were not able to reliably get SupCon to perform better than SimCLR.
This could perhaps be because of not being able to determine the right hyperparameters, or even
could be due to the quality and relevance of data representation; SimCLR, by maximizing agreement
between different augmented views of the same sentence, may capture a broader and more nuanced
semantic understanding that aligns well with the specifics of intent classification. This unsupervised
approach is not affected by labeling noise, which can adversely affect SupCon’s performance by
introducing inaccuracies into the supervised learning process.

5.11 Question 11

Q11: What could you do to further improve the performance ?

A11: To boost model performance, we could explore more on hyperparameter experimentation,
such as adjusting learning rates, augmentation techniques, and loss function settings. Additionally,
perhaps implementing a hybrid approach where a model is first trained on SimCLR for unsupervised
pre-training to capture broad features from unlabeled data, and then refined with features with SupCon
through supervised fine-tuning on labeled data could be a viable strategy to improve robustness and
performance. This leverages the strengths of both unsupervised and supervised learning, potentially
leading to more effective and nuanced model performance.

6 Authors’ Contributions

6.1 Vivian

Pair programmed with Jack on the Baseline and Custom models. Assisted in getting rid of the
numerous indentation errors in the initial code. Wrote the about the Custom Fine-tuning Model in
the Methods section, recorded some of losses and accuracies. Also answered half of question 4,
generated some of the plots, and wrote the readme file.

6.2 Hou

Pair programmed with Elsie on the Contrastive learning models. Wrote the answers for all questions
regarding the results and implementation of the contrastive models, and ran both models to get
accuracies as well as loss plots. Wrote part of Related Work and Abstract.



6.3 Elsie

Pair programmed with Hou on Contrastive learning models and ran them. For the report, wrote
Discussion Q1, the Introduction, most of Related Work, part of Abstract, and description of the
Method baseline model.

6.4 Jack

Pair programed with Vivian on the Baseline and Custom models. Implemented the plot function.
Assisted with debugging for the supcon model. Also wrote the answers for questions 3, 4, 5 and part
of 6 and 7. Also ran some of the models to get the train loss and accuracy and the validation accuracy.
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Figure 1: Baseline with Fine Tuning Accuracy

A.2 With 15 technique Warm Up Steps
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Figure 2: With Warm Up Steps Only

A.3  With 2" technique Reinit Last Layers
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Figure 3: With Reinit Last Layers Only

A.4 With SupCon loss contrastive learning
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Figure 4: Supervised contrastive learning



A.5 With SimCLR loss contrastive learning
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