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Introduction

Preserving the Earth's ecosystem in the face of our own greenhouse gas and aerosol emissions
requires accurate modeling of how the climate will respond to increasing amounts of aerosol
particles:
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Figure 1. GHG CO,4 scenarios

Current Earth System models are based on physical laws and climatological observations and thus
are not well-suited for exploring various socioeconomic futures due to their inefficiency. Climate
Bench (1], developed by our mentor Duncan Watson-Paris, offers a more effective approach
oy using Deep Learning to model numerous potential climate futures. Our project seeks to en-
nance these models by employing advanced Deep Learning techniques, aiming to surpass Climate
Bench's benchmarks. Figure 2 illustrates the mean surface temperature for scenario SSP245 dur-
ing the years 2080-2100, serving as the benchmark against which our results will be compared.

Data

Methods - Deep Kernel Learning

Evaluation Metric

For one of the models that we implemented, it was a Deep Kernel Learning Regressor. This
s a hybrid model that combines both the infinite expressiveness of a Neural Network and the
probabilistic modeling of a Gaussian Process. This is done by using the learning capabilities of
Neural Networks, to learn a feature representation of the data which will act as the kernel for the
Gaussian Process.
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Deep Kernel Learning Structure

Methods - XGBoost

We are using the same metric used in ClimateBench[1] to compare with the baseline models.

NRMSEs = {1l = v b0 0 e (1
NRMSEy = \/I(tzs ) = i) 2/ 3 e 2
NRMSE; = NRMSE +a x NRMSE, 3)

NRMSE; is the global mean root-mean-squared error, and NRMSE, is its global mean equiva-
lent. The equation features a weighting function for the diminishing grid-cell area near the poles.
The coefficient a = 5, as per the ClimateBench paper, balances the measures. This yields a total
NRMSE: that evaluates both global and spatial accuracy.

Model Comparisons

The input data for three Deep Learning models is from the Norwegian Earth System Model, which
s generated from the NorESM2 model for historical and future emission data. This generated
dataset also is a part of the sixth coupled model intercomparison project. The data is multi-
dimensional, which includes emission data from different times, longitudes, and latitudes.

Input Variables Qutput Variables
COy Temperature
SO Daily Diurnal Temperature Range
CHy Precipitation

Black Carbon (BC) 90 Percentile Precipitation

Baseline From Reproduction

Gaussian Process - Gaussian Process was built using 12 Matern32 Kernels, to allow each dimen-
sion of the input to be invariant from one another. Trained with a Constant Mean Function and
Optimized by minimizing the Loss.

Random Forest - The Random Forest combined the results from multiple decision trees. The "Ran-
domizedSearchCV” technigue has been applied for hyperparameters tuning and cross-validation
to find the best parameters for the corresponding variables and increase the robustness of the
model.

Convoluted Neural Network - Seven layer CNN architecture consisting of 3 Time distributed
lavers, a LSTM layer with RellU activation, a Dense layer, a linear activation layer, and a reshape
laver. It uses root-mean-squared optimizer and mean-square error as the loss metric.

Github: https./Z/github.com/jacklk/ClimateBench-Plus

The XGBoost stands for "Extreme Gradient Boosting”. It not only integrates the predictions from
multiple decision trees like Random Forest but also combines multiple machine learning algorithms
to boost the decision trees. For example, gradient descent, regularization, and shrinkage are
applied to reduce overfitting. Here are the steps for optimization:
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Methods - Physics Informed Neural Network (PINN)

Physics informed neural networks are a still emerging field in scientific machine learning. It takes
the neural networks' ability to learn weights for parameters and combines it with physical equa-
fions to further improve the robustness and accuracy of the resulting model.
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Figure 3. Creating the PINN

By including the physical ordinary differential equations relating the aerosol emission to tem-
perature in the loss function, the resulting network is bounded during the training by physical
constraints.

To compare our results, we are going to put each model head to head against its counterpart
comparing the NRMSE;, as the evaluation.

Model GPs CNNS Random Forests

Variables Baseline DKL Baseline  PINN Baseline RF XGBoost
Temperature 0.309 0.304 0317 031/ 2422 0.911
Temperature range 22443 16.287 14.563 13.017 27017 24.995
Precipitation 42272 4004 3.153 3.158 10.217  5.937
9Qth Precipitation 4582 4.558 4380 4.286 11.712  6.664

Table 1. Comparison Table

Overall, our models have slight improvement upon the NRMSE scores of ClimateBench.

Figure 4. Model Results for Mean Temperature
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