
DSC 140A - Homework 02
Due: Wednesday, January 24

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 PM.

Problem 1.

Let A be a symmetric n× n matrix, and let x⃗ ∈ Rn. Let f(x⃗) = x⃗TAx⃗. Show that

df

dx⃗
= 2Ax⃗.

Hint: this problem was started in discussion.

Solution: First we rewrite Ax⃗ as it’s sum of components:

Ax⃗ =

n∑
j=1

xj


a1j
a2j
...

anj


Then we can rewrite f(x⃗) as:

f(x⃗) = x⃗TAx⃗ =

n∑
i=1

xi

n∑
j=1

xjaij =

n∑
i=1

n∑
j=1

xixjaij

Now we can take the partial derivative of f(x⃗) with respect to xk:

∂f

∂xk
=

∂

∂xk

n∑
i=1

n∑
j=1

xixjaij

Looking at when k = 1:

∂f

∂x1
=

∂

∂x1

n∑
i=1

n∑
j=1

xixjaij

There are 2 cases to consider, when i = 1, when j = 1, looking at the first case:

∂f

∂x1
=

∂

∂x1

n∑
j=1

x1xja1j =

n∑
j=1

xja1j

Looking at the second case:

∂f

∂x1
=

∂

∂x1

n∑
i=1

xix1ai1 =

n∑
i=1

xiai1

Combining the two cases:

∂f

∂x1
=

n∑
j=1

xja1j +

n∑
i=1

xiai1
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And since A is symmetric, aij = aji, so we can rewrite the above as:

∂f

∂x1
= 2

n∑
j=1

xja1j

So we can generalize this to all k:

∂f

∂xk
= 2

n∑
j=1

xjakj

And since this is true for all k, we can rewrite this as:

∂f

∂x⃗
=


2
∑n

j=1 xja1j
2
∑n

j=1 xja2j
...

2
∑n

j=1 xjanj

 =


2a11 2a12 · · · 2a1n
2a21 2a22 · · · 2a2n
...

...
. . .

...
2an1 2an2 · · · 2ann



x1

x2

...
xn

 = 2Ax⃗

Problem 2.

Consider a linear prediction function H used for binary classification, and assume that when the output of
H is positive we predict for class +1, and when it’s negative we predict for class -1. This means that the
decision boundary is where H(x⃗) = 0.

In lecture, we saw that a linear prediction function has the form:

H(x⃗) = w0 + w1x1 + . . .+ wdxd

= w⃗ ·Aug(x⃗)

where w⃗ = (w0, w1, . . . , wd)
T . In this problem, it will also be useful to define the vector w⃗′ = (w1, . . . , wd)

T ,
which is the same as w⃗ except that it does not include w0. Note that x⃗ · w⃗′ = w1x1 + . . . wdxd. With this
definition, we can write H(x⃗) in a slightly different way:

H(x⃗) = w0 + w⃗′ · x⃗

Remember this formula, as it will be useful several times below!

Over the course of this problem, we’ll answer the question: how is the magnitude of H(x⃗) related to the
distance between x⃗ and the decision boundary?

Note: for this problem it may be useful to review the properties of the dot product and vector algebra. In
particular, remember that ∥u∥ denotes the norm (length) of a vector, and that u⃗ · u⃗ = ∥u∥2. By dividing
a vector by its norm, as in u⃗/∥u⃗∥, we obtain a unit vector with unit length – a unit vector is useful for
specifying a direction. To find the component of a vector u⃗ that points in the same direction as another
vector v⃗, we write u⃗ · v⃗/∥v⃗∥. Also remember that u⃗ · v⃗ = v⃗ · u⃗, and that u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗.

a) Show that for any point z⃗ on the decision boundary, w⃗′ · z⃗ = −w0.

Hint: use that fact that H(z⃗) = 0.

Solution: We can use that fact that H(z⃗) = 0, then we can rewrite this as:

H(z⃗) = w0 + w⃗′ · z⃗ = 0

Then rearranging this equation we get:

w⃗′ · z⃗ = −w0
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As desired.

b) Argue that w⃗′ is orthogonal to the decision boundary.

Hint: take two arbitrary points x⃗(1) and x⃗(2) that are assumed to be on the decision boundary. Then,
since we know that the boundary is linear (it is a line, plane, etc.), the difference of these vectors,

δ⃗ = x⃗(1) − x⃗(2) is parallel to the boundary. To show that w⃗′ is orthogonal to the boundary, it suffices
to show that w⃗′ · δ⃗ = 0. Make sure you somehow use the fact that x⃗(1) and x⃗(2) are on the decision
boundary.

Solution: As said in the question, let x⃗(1) and x⃗(2) be two arbitrary points on the decision
boundary. Then we can write:

w⃗′ · x⃗(1) + w⃗0 = 0

w⃗′ · x⃗(2) + w⃗0 = 0

And we can also definre δ⃗ = x⃗(1) − x⃗(2). Then subtracting the two equations above we get:

w⃗′(x⃗(1) − x⃗(2)) = 0

And δ = x⃗(1) − x⃗(2), thus,
w⃗′ · δ⃗ = 0

And since x⃗(1) and x⃗(2) are on the decision boundary, it means that they are parallel to the
boundary, and since δ⃗ is the difference of the two points, it is also parallel to the boundary. Thus,
w⃗′ is orthogonal to the decision boundary.

c) Now that we know that w⃗′ is orthogonal to the decision boundary, we can draw a better picture of
the situation:

The blue line is the decision boundary – it is where H = 0. We have drawn an arbitary point x⃗, along
with several distances:

� d: the (signed) distance from the decision boundary to x⃗
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� b: the distance from the the origin to the decision boundary

� d0: the length of the component of x⃗ that is orthogonal to the decision boundary.

We’re most interested in knowing d. First, though, we need to find b.

Consider the vector bw⃗′/∥w⃗′∥; this is a vector from the origin to the decision boundary that is orthog-
onal to the boundary and with length b.

Since this vector is on the decision boundary, H(bw⃗′/∥w⃗′∥) = 0. Using this fact, show that b = − w0

∥w⃗′∥
.

Hint: first show that H(bw⃗′/∥w⃗′∥) = b∥w⃗′∥+ w0, then set this to zero and solve for b.

Solution: Using H(bw⃗′/∥w⃗′∥) = 0, we can rewrite this as:

H(bw⃗′/∥w⃗′∥) = b
w⃗′ · w⃗′

∥w⃗′∥
+ w0

b∥w⃗′∥+ w0 = 0

b∥w⃗′∥ = −w0

b = − w0

∥w⃗′∥

d) Recall that d0 is the component of x⃗ that is orthogonal to the decision boundary; this is simply
x⃗ · w⃗′/∥w⃗′∥. From the picture, d0 = d+ b. We know d0 and b, and can therefore solve for d.

Use this to show that |d| = |H(x⃗)|/∥w⃗′∥.

Solution: Using all the information above, we can write:

d = d0 − b

=
x⃗ · w⃗′

∥w⃗′∥
+

w⃗0

∥w⃗′∥

=
x⃗ · w⃗′ + w⃗0

∥w⃗′∥

=
H(x⃗)

∥w⃗′∥
, since H(x⃗) = x⃗ · w⃗′ + w⃗0

And since d is the distance from the decision boundary to x⃗, we can write |d| = |H(x⃗)|/∥w⃗′∥.
Getting the result we wanted.

We have shown that the distance between x⃗ and the decision boundary is proportional to the output of the
prediction function, H(x⃗). This gives us a very useful interpretation of |H(x⃗)|! For example, this means if
H(x⃗(1)) > H(x⃗(2)) > 0, then x⃗(1) is further from the decision boundary than x⃗(2).

Problem 3.

The file at the link below contains a simple data set suitable for regression.

https://f000.backblazeb2.com/file/jeldridge-data/002-regression_outlier/data.csv

The first column contains the x values (the predictor variable) and the second column contais the y values
(the target).

The plot below shows the data:
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Notably, the data contains outliers which may affect our regression.

Fit a linear function of the form w0 + w1x by minimizing the mean squared error. Report w0 and w1, and
include your code.

Hint: You may use whatever language or tool you’d like, but if you’re using Python, take a look at
np.linalg.lstsq.

Code

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 data = np.loadtxt('data.csv', delimiter=',')

5

6 data = np.c_[np.ones(data.shape[0]), data]

7

8 w0, w1 = np.linalg.lstsq(data[:,[0,1]], data[:,2])[0]

9

10 print('w0 = {}, w1 = {}'.format(w0, w1))

Solution: The values are w0 = 11.259 and w1 = 0.180 rounded to three decimal places.
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