
DSC 140A - Homework 03
Due: Wednesday, January 31

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 PM.

Problem 1.

Suppose that f : Rd → R is convex and g : R → R is convex and non-decreasing. That is, if a > b, then
g(a) ≥ g(b).

Show that the composition of these functions, h(x⃗) = g(f(x⃗)), is also convex.

Hint: you’ll want to go back to the definition to show this is true. A similar problem was solved in discussion.

Solution: Using the definition of convexity, we have that a function f is convex if every a, b ∈ R and
t ∈ [0, 1], the following is true

(1− t)f(a) + tf(b) ≥ f((1− t)a+ tb)

So given that h(x⃗) = g(f(x⃗)), to show that h is convex, we have to show that the following is true

(1− t)h(x⃗1) + th(x⃗2) ≥ h((1− t)x⃗1 + tx⃗2)

First using the fact that h(x⃗) = g(f(x⃗)), and that g is convex and non-decreasing, we have that

(1− t)h(x⃗1) + th(x⃗2) = (1− t)g(f(x⃗1)) + tg(f(x⃗2))

≥ g((1− t)f(x⃗1) + tf(x⃗2))

Now we can use the fact that f is convex to show that

g((1− t)f(x⃗1) + tf(x⃗2)) ≥ g(f((1− t)x⃗1 + tx⃗2))

No we can combine the two inequalities to show that

(1− t)h(x⃗1) + th(x⃗2) ≥ g(f((1− t)x⃗1 + tx⃗2))

≥ h((1− t)x⃗1 + tx⃗2)

Thus we have shown that h is convex.

Problem 2.

Recall that the hinge loss is
Lhinge(w⃗, x⃗, y) = max{0, 1− y w⃗ ·Aug(x⃗)}

The Soft-SVM problem aims to minimize the regularized empirical risk:

R(w⃗) =
C

n

n∑
i=1

Lhinge(w⃗, x⃗
(i), yi) + ∥w⃗∥2

Show that R(w⃗) is a convex function of w⃗.

Hint: you will probably not want to use the formal definition of convexity here. Instead, you’ll want to show
that R is composed of simpler functions which themselves are convex.
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Solution: We can show that R(w⃗) is convex by showing that the functions that compose it are convex.
I.e we need to show that the hinge loss function is convex and that the function f(w⃗) = ∥w⃗∥2 is convex.

Hinge Loss

To show that the Hinge Loss function is convex, we can look at the function more closely,

Lhinge(w⃗, x⃗, y) = max{0, 1− y w⃗ ·Aug(x⃗)}

We can further decompose the function as we see that the function is the maximum of two functions.
Hence if we can show that both of these functions are convex, then we can show that the hinge loss
function is convex. The first function is the zero function, which is trivially convex. The second function
is 1− y w⃗ ·Aug(x⃗). Which from lecture we know is an affine function, and hence convex. Thus we have
shown that the hinge loss function is convex.

Function f(w⃗) = ∥w⃗∥2

To show that the function f(w⃗) = ∥w⃗∥2 is convex, we can use the Hessian matrix to show that the
function is convex. As the function is defined as

f(w⃗) = ∥w⃗∥2 = w2
1 + w2

2 + · · ·+ w2
d

we have the first order derivatives as

∂f

∂wi
= 2wi =


2w1

2w2

...
2wd


Then for the second order derivatives we have all the second order partials as

H =


∂2f
∂w2

1
= 2 0 . . . 0

0 ∂2f
∂w2

2
= 2 . . . 0

...
...

. . .
...

0 0 . . . ∂2f
∂w2

d
= 2


This is because the second order partials of the function are all zero except when i = j, in which case
the second order partial is 2. Which implies that the function is convex.

As we have shown that both the hinge loss function and the function f(w⃗) = ∥w⃗∥2 are convex, looking
at the R(w⃗) function again, we can see that it is it is composed of two convex functions summations
above and a C

n , as C and n are just constants, including them, the function is still convex. Now looking
at the summations, in lecture we know that the sum of 2 convex functions is convex, which will hold
for a summation over n convex functions. Thus we have shown that R(w⃗) is convex.

Problem 3.

In the last homework, you fit a line to the data set below by minimizing the mean squared error:
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Notably, the data contains outliers which may affect our regression.

Remember that you can download the data set at the link below:

https://f000.backblazeb2.com/file/jeldridge-data/002-regression_outlier/data.csv

a) Recall the absolute loss:
Labs(H(x), y) = |H(x)− y|.

The absolute loss is not as sensitive to outliers as compared to the square loss. However, it is not
differentiable, so unlike the mean squared error there is no closed form solution for the minimizer of
the risk.

Implement subgradient descent and use it to fit a function of the form w0 + w1x by minimizing the
risk with respect to the absolute loss. Report w0 and w1, and provide your code.

Hint: the subgradient of the absolute loss was considered in discussion.

Code

import numpy as np

import matplotlib.pyplot as plt

def gradient_descent(gradient, x, y, w0, w1, learning_rate=0.0001,

threshold=1e-4, max_iter=1000):

count = 0

while True:

grad = gradient(x, y, w0, w1)

w0_new = w0 - learning_rate * grad[0]

w1_new = w1 - learning_rate * grad[1]

if abs(w1_new - w1) < threshold and abs(w0_new - w0) < threshold:

break

w0, w1 = w0_new, w1_new

if count > max_iter:

print(count)

break

count += 1

return w1, w0

3

https://f000.backblazeb2.com/file/jeldridge-data/002-regression_outlier/data.csv


def d_abs_loss(x, y, w_0, w_1):

y_pred = w_0 + w_1 * x

grad_w_0 = np.sign(y_pred - y).mean()

grad_w_1 = (np.sign(y_pred - y) * x).mean()

return grad_w_0, grad_w_1

data = np.loadtxt('data.csv', delimiter=',')

x = data[:, 0]

y = data[:, 1]

# init weights randomly

w_0 = 0

w_1 = 0

new_w_1, new_w_0 = gradient_descent(d_abs_loss, x, y, w_1, w_0, max_iter=1000000)

print("Final weights:")

print("w_0 =", new_w_0)

print("w_1 =", new_w_1)

Solution: The code above produces the following output:

w0 = 1.7746000000000444 w1 = 4.015744499999941

b) Plot both of the fitted lines on top of a scatter plot of the data; that is, plot the least squares regression
line you found in Homework 02 and the line fit by minimizing the risk of the absolute loss.

You should see that the two lines are quite different. Briefly explain why this is the case.

Code

# w0 and w1 from Homework 2

w_0_mse = 11.259

w_1_mse = 0.180

w_0_abs = 1.7746000000000444

w_1_abs = 4.015744499999941

y_pred_mse = w_0_mse + w_1_mse * x

y_pred_abs = w_0_abs + w_1_abs * x

plt.figure(figsize=(12, 10))

plt.plot(x, y_pred_mse, color='red', label='MSE')

plt.plot(x, y_pred_abs, color='blue', label='MAE')

plt.plot(x, y, marker='.', linestyle='none', color='green', label='data')

plt.title('Linear regression with MSE and MAE')

plt.legend()

plt.show()

Solution: The code above produces the following plot:
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There is a a huge difference between the two lines, as the line fit by the MSE loss, which is the
red line is very clearly being affected heavily by the outlier, which causes the line to be more
straight and miss the true trend of the data. The line fit by the absolute loss, which is the blue
line, is not affected by the outlier as much, and hence it was able to capture the trend of the
data better, which is evident as the line runs almost straight through the middle of the data points.

This is the case because the MSE loss is more sensitive to outliers than the absolute loss, due
to the fact that the MSE loss squares the difference between the predicted value and the actual
value, which causes loss values to be much larger than the absolute loss, which in a extremely
case like the data given above, the due to the large difference between the points, the MSE loss
accumalated extremely large losses from the outliers, which caused the risk minimizer to be heav-
ily affected by the outliers, and hence the line fit by the MSE loss was heavily affected by the
outlier. On the other hand, the absolute loss is not as sensitive to outliers, as the absolute loss
does not square the difference between the predicted value and the actual value, and hence the
loss values are not as large as the MSE loss, and hence the risk minimizer is not as affected by
the outliers, and hence the line fit by the absolute loss was not as affected by the outlier.
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