
DSC 40B - Homework 01
Due: Monday, October 3

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 p.m.

Problem 1.

Roughly how long will it take for a linear time algorithm to run? What about a quadratic time algorithm?
Or worse, a cubic? In this problem, we’ll estimate these times.

Suppose algorithm A takes n microseconds to run on a problem of size n, while algorithm B takes n2

microseconds and algorithm C takes n3 microseconds (recall that a microsecond is one millionth of a second).
How long will each algorithm take to run when the input is of size one thousand, ten thousand, one hundred
thousand, and one million? That is, fill in the following table:

n = 1,000 n = 10,000 n = 100,000 n = 1,000,000

A (Linear) 0.00 s 0.01 s 0.10 s 1 s
B (Quadratic) ? ? ? ?

C (Cubic) ? ? ? ?

The answers for Algorithm A are already provided; you can use them to check your strategy.

Express each time in either seconds, minutes, hours, days, or years. Use the largest unit that you can
without getting an answer less than one. For example, instead of “365 days”, say “1 year”; but use “364
days” instead of “0.997 years”. Round to two decimal places (it’s OK for an answer to round to 0.00).

Hint: you can calculate your answers by hand, or you can write some code to compute them. If you write
code, provide it with your solution – if you solve by hand, show your calculations.

Solution:

n = 1,000 n = 10,000 n = 100,000 n = 1,000,000

A (Linear) 0.00 s 0.01 s 0.10 s 1 s
B (Quadratic) 1 s 1.67 mins 2.78 hrs 11.57 days

C (Cubic) 16.67 mins 11.57 days 31.71 years 3170.98 decades

#Time taken for exactly one run

t = 1/1000000

n1, n2, n3, n4 = 1_000, 10_000, 100_000, 1_000_000

#For Quadratic time

b1 = t*n1**2

b2 = round((t*n2**2)/60, 2) #Convert to minutes

b3 = round((t*n3**2)/3600, 2) #Convert to hours

b4 = round((t*n4**2)/86400, 2) #Convert to Days

#Cubic tme

c1 = round((t*n1**3)/60, 2) #Convert to minutes

c2 = round((t*n2**3)/86400, 2) #Convert to days

c3 = round((t*n3**3)/(86400*365), 2)#Convert to years

c4 = round((t*n4**3)/(86400*365*10), 2)#Convert to decades

1

print("For Quadratic = " + str([b1, b2, b3, b4]))

print("For Cubic = " + str([c1, c2, c3, c4]))

Problem 2.

Determine the time complexity of the following piece of code, showing your reasoning and your work.

def f(n):

i = 1

while i <= n:

i *= 2

for j in range(i):

print(i, j)

Hint: you might need to think back to calculus to remember the formula for the sum of a geometric
progression... or you can check wikipedia.1

Solution: As i increases at a rate of 2n on the flip side the while loop then runs a total of log2(n)
times which grants us a time complexity of Θ(log n). As for the second loop, i increases at a rate of
2n however since the outer loop is a while loop that does not allow i to be any more than n, the inner
loops time complexity is Θ(n). Combining the 2 largest time complexities we get the final total time
complexity of the algorithm to be n× log n = Θ(n log n)

Problem 3.

Consider the following code which constructs a numpy array of n random numbers:2

import numpy as np

results = np.array([])

for i in range(n):

results = np.append(results, np.random.uniform())

Remember that we have to write results = np.append(results, np.random.uniform()) instead of just
np.append(results, np.random.uniform()) because it turns out that np.append returns a copy of results
with the new entry appended to the end.

Note that this code is very similar to how we taught you to run simulations in DSC 10: we first created an
empty numpy array, and then ran our simulation in a loop, appending the result of each simulation with
np.append. When we ran simulations, we often used n = 100,000 or larger (and they took a while to finish).

a) Guess the time complexity of the above code as a function of n. Don’t worry about getting the right
answer (we won’t grade for correctness). You don’t need to explain your answer.

Solution: Looking at the code, the for loop runs a total of n times giving a time complexity of
Theta(n) and the inner code copies a numpy array and adds a new value to it, I assume runs in a
time complexity of Θ(1) Therefore we get the final time complexity of the algothrim to be Θ(n)

b) Time how long the above code takes when n is: 10,000, 20,000, 40,000, 80,000, 120,000, and 160,000.
Then make a plot of the times, where the x-axis is n (the input size) and the y-axis is the time taken
in seconds.

Hint: You can do the timing by hand with the %%time magic function in a Jupyter notebook, or you
can use the time() function in the time module. For example, to time the function foo:

1https://en.wikipedia.org/wiki/Geometric_progression
2Note that in practice you wouldn’t do this with a loop; you’d write np.random.uniform(n) to generate the array in one line

of code.

2

https://en.wikipedia.org/wiki/Geometric_progression

import time

start = time.time()

foo()

stop = time.time()

time_taken = stop - start

Solution:

import numpy as np

import time

import matplotlib.pyplot as plt

#Function

def ranint(n):

results = np.array([])

for i in range(n):

results = np.append(results, np.random.uniform())

return results

#Loops

iterations = [10_000, 20_000, 40_000, 80_000, 120_000, 160_000]

times = []

for n in iterations:

start = time.time()

ranint(n)

end = time.time()

times.append(end - start)

#Plot Graph

plt.plot(iterations, times)

c) Looking at your plot, what do you now think the time complexity is? Why does the code have this
time complexity?

Hint: what is the time complexity of np.append, and why?

Solution:

3

Looking at the plot it is easy to see that the graph shows and exponential increase as the values
of n increase. This tells me that the function np.append is not Θ(1) as I thought at the beginning
rather it works in Θ(n) time, meaning every time it copies an array it loops through each element
in the array copying it to a new array. Which then gives us the time complexity of the entire
algorithm to be Θ(n× n) = Θ(n2)

d) It turns out that creating an empty numpy array and appending to it at the end of each iteration is a
terrible way to do things, and you should never write code like this if you can avoid it.3 Instead, you
should create an empty Python list, append to it, then make an array from that list, like so:

lst = []

for i in range(n):

lst.append(np.random.uniform())

arr = np.array(lst)

To check this, repeat part (b), but with this new code. Show your plot. It is OK if your plot is a little
odd, but it shouldn’t be quadratic! (Check with a tutor if you’re concerned).

Solution: Code

times = []

for n in iterations:

start = time.time()

lst = []

for i in range(n):

lst.append(np.random.uniform())

arr = np.array(lst)

end = time.time()

times.append(end - start)

plt.plot(iterations, times)

3We taught you the np.append way because it was conceptually simpler – we didn’t need to introduce you to Python lists.
This is one instance in which your professors lie to you in early courses, then correct their lies later on.

4

With the new method, we can see that the time complexity of the same algorithm has went from
a quadratic time to a linear time Θ(n)

5

