
DSC 40B - Homework 02
Due: Monday, October 10

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 p.m.

Problem 1.

State the growth of the function below using Θ notation, and prove your answer by finding constants which
satisfy the definition of Θ notation.

f(n) =
n3 − n2 + n+ 1000

(n− 1)(n+ 2)

Solution: First we find the upper bound of the function,

f(n) =
n3 − n2 + n+ 1000

(n− 1)(n− 2)
(1)

≤ 2n3

n2 + (n2 − 2)
(2)

≤ 2n where n ≥
√
2 (3)

Then for the lower bound it is,

f(n) =
n3 − n2 + n+ 1000

(n− 1)(n− 2)
(4)

≥ n3

2n2
(5)

=
1

2
n (6)

Therefore we get the final inequality to be,

1

2
n ≤ f(n) ≤ 2n

Which yields us the time complexity,
f(n) = Θ(n)

Problem 2.

Suppose T1(n), . . . , T6(n) are functions describing the runtime of six algorithms. Furthermore, suppose we

1

have the following bounds on each function:

T1(n) = Θ(n3)

T2(n) = O(n log n)

T3(n) = Ω(log n)

T4(n) = O(n4) and T4 = Ω(n2)

T5(n) = Θ(n)

T6(n) = Θ(n log n)

T7(n) = O(n1.5 log n) and T7 = Ω(n log n)

What are the best bounds that can be placed on the following functions?

For this problem, you do not need to show work.

Hint: watch the supplemental lecture at https://youtu.be/tmR-bIN2qw4.

Example: T1(n) + T2(n).

Solution: T1(n) + T2(n) is Θ(n3).

a) T1(n) + T5(n)

Solution:
T1(n) + T5(n) = Θ(n3) + Θ(n) = Θ(n3)

b) T2(n) + T6(n)

Solution: First we get a upper and lower bound,

O = T2(n) + T6(n) = O(nlogn) + Θ(nlogn) = O(nlogn)

and
Ω = T2(n) + T6(n) = O(nlogn) + Θ(nlogn) = Ω(nlogn)

Therefore we can get Θ to be Θ(nlogn).

c) T4(n) + T5(n)

Solution: With the info given we can deduce an upper and a lower bound

O = O(n4 + n) = O(n4)

Ω = Ω(n2 + n) = Ω(n2)

d) T7(n) + T4(n)

Solution: With the info given we can get both a upper and a lower bound

O = O(n1.5logn+ n4) = O(n4)

Ω = Ω(nlogn+ n2) = Ω(n2)

e) T3(n) + T1(n)

2

https://youtu.be/tmR-bIN2qw4

Solution:
O(∞+ n3) = Undefined

We cannot get an upper bound for this problem as T3(n) only has a lower bound, therefore we
cannot make any inferences about the upper bound. Therefore we cannot get an upper bound
with the information given.

Ω(logn+ n3) = Ω(n3) (7)

f) T1(n)× T4(n)

Solution: We can get a upper and a lower bound,

O = O(n3 × n4) = O(n7)

Ω = Ω(n3 × n2) = Ω(n5)

Problem 3.

In each of the problems below compute the average case time complexity (or expected time) of the given
code. State your answer using asymptotic notation. Show your work for this problem by stating what the
different cases are, the probability of each case, and how long each case takes. Also show the calculation of
the expected time.

a) def foo(n):

randomly choose a number between 0 and n-1 in constant time

k = np.random.randint(n)

if k > n/10:

for i in range(n):

print(i)

else:

print('Never mind...')

Solution: Throughout the whole question, case 1 will refer to the case where k > n
10 and case

2 refers to the else statement.

First we get the probability of each case happening,

{
P (Case 1) = n−10

n

P (Case 2) = 10
n

Now we need to

get the time complexity of each case,

{
T (Case 1) = Θ(n)

T (Case 2) = Θ(1)
Using all that we can solve for the

expected time complexity of the function,∑
P (i) · T (i) = n− 10

n
Θ(n) +

10

n
Θ(1) = Θ(n)

b) def bogomax(numbers):

"""Find the largest number by random guess and check."""

while True:

randomly choose an element with uniform probability in constant time

guess = random.choice(numbers)

check whether it is the largest

3

for number in numbers:

guess_is_a_maximum = True

if number > guess:

guess_is_a_maximum = False

if guess_is_a_maximum:

return guess

In this part, you may assume that the numbers are distinct, and that n is the size of numbers.

Hint: if 0 < b < 1, then
∑∞

p=1 p · bp−1 = 1
(1−b)2 .

Solution: First we have to notice that for this particular function, it can go on infinitely
theoretically. Therefore we have to find the case in which the function ends to find the average
time complexity. We can get the probability of that to happen to be,

P (i) = (1− 1

n
)k−1 · (1

n
)

Where k is the iteration in which the guess is found. ANd we also need to get the time complexity
for one iteration which we can get as,

T (i) = Θ(n)

Then using that the the formula we get,

∞∑
i=1

(1− 1

n
)k−1 · (1

n
) · cni = c

∞∑
i=1

i(1− 1

n
)k−1 (8)

= c× 1

(1− 1 + 1
n)

2
(9)

= cn2 (10)

Therefore we get that the average time complexity of the function is Θ(n2)

c) Extra Credit (3 points)

Note: this part is extra credit, and is totally optional! We suggest skipping it for now and coming
back to it if you have time.

The above version of bogomax can be improved by immediately returning when a maximum is found,
as shown in the following code:

import random

def bogomax(numbers):

"""Find the largest number by random guess and check."""

while True:

randomly choose an element with uniform probability in constant time

guess = random.choice(numbers)

check whether it is the largest

for number in numbers:

if number > guess:

break

else:

yes, python has for-else blocks.

4

if we get here, the for-loop completed without breaking

return guess

This makes the code more performant, but harder to analyze.

Analyze the average case time complexity of this code rigorously. You may assume that the elements
of numbers are unique and that the maximum is equally-likely to be anywhere in the list.

Solution: With this version of bogomax, we can again have the same assumption that the
function can theoretically go on forever, and the probability of getting the max value on any
guess is still,

P (i) = (1− 1

n
)k−1 · (1

n
)

The difference however, is that the for loop breaks if and when the max is found. We can deduce
that the new for loop is essentially like a linear search. Therefore we get,

T (i) = Θ(n)

Therefore we get the average case to still be,

∞∑
i=1

(1− 1

n
)k−1 · (1

n
) · cni = c

∞∑
i=1

i(1− 1

n
)k−1 (11)

= c× 1

(1− 1 + 1
n)

2
(12)

= cn2 (13)

So the average case for the function is still Θ(n2) although it is easy to see that this change does
make the code faster, but in the consideration of big Θ it is not any faster and still Θ(n2)

Problem 4.

Provide a tight theoretical lower bound for the problems given below. Provide justification for your answer.

a) Given a list of size n containing Trues and Falses, determine whether True or False is more common
(or if there is a tie).

Solution: The tight theoretical lower bound will have to be Ω(n) this is because in order to be
sure the exact count of each element we have to iterate through ever single element in the list at
least once to ensure we have the right most common value.

b) Given a list of n numbers, all assumed to be integers between 1 and 100, sort them.

Solution: If we assume the best case scenario where the list is already sorted, we can say that
the tight lower bound is Ω(n) as the algorithmn would still have to iterate through every single
element in order to verify that the list is indeed already sorted. However, if we assume that the
list is not sorted, then the tight lower bound would be Ω(nlogn) this is because the algorithmn
would have to iterate though every value at least once, and if there is an element in the wrong
spot, would have to move it to the right spot which should be logn time. Therefore giving us
Ω(nlogn).

c) Given an
√
n×n array whose rows are sorted (but whose columns may not be), find the largest overall

entry in the array.

5

For example, the array could look like:

 −2 4 7 8 10 12 20 21 50
−30 −20 −10 0 1 2 3 21 23
−10 −2 0 2 4 6 30 31 35


This is an

√
n × n array, with n = 9 (there are 3 rows and 9 columns). Each row is sorted, but the

columns aren’t.

Solution: The tight lower bound is Ω(n), this is due to the special case where the rows are
already sorted so one must only check the last column of the matrix to find the largest value in
the array. As no matter what the largest value of each row is at the last column making the only
possible place for the largest value to be to be in the last column only.

6

