
DSC 40B - Homework 04
Due: Monday, October 24

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 p.m.

Problem 0. (1 Point Extra Credit on Midterm)

We’d like to know what you think about DSC 40B and the DSC program overall. We’ve posted a mid-quarter
survey here:

https://forms.gle/gEeLri8ds4hiHfZx7

The survey is totally anonymous (unless you include your email, but that’s optional).

If 80% of the class fills out the survey before Midterm 01, we’ll give everyone 1 point of extra
credit on the midterm exam. In addition, you’ll get the warm fuzzy feeling of having made DSC a better
place.

Problem 1.

Suppose a binary search tree has been augmented so that each node contains an additional attribute called
size which contains the number of nodes in the subtree rooted at that node. Complete the following code
so that it computes the value of the kth smallest key in the tree, where k = 1 is the minimum.

def order_statistic(node, k):

if node.left is None:

left_size = 0

else:

left_size = node.left.size

order = left_size + 1

if order == k:

return node.key

elif order < k:

return order_statistic(...)

else:

return order_statistic(...)

Solution: Since the code only checks the size of the left root, whenever we traverse towards the right
root, we can substract the kth order value by the order of the left nodes value. This works as all the
values on the left of the node already covers the the orders from (1, k-x) therefore the new kth value to
look for is knew = kold − order. Using this we can get the solution to the algorithmn as,

Code

def order_statistic(node, k):

if node.left is None:

left_size = 0

else:

left_size = node.left.size

1

https://forms.gle/gEeLri8ds4hiHfZx7


order = left_size + 1

if order == k:

return node.key

elif order < k:

return order_statistic(node.right, k - order)

else:

return order_statistic(node.left, k)

Problem 2.

Describe a strategy that, given a sorted array with n elements, constructs a balanced binary search tree in
Θ(n) time.

This is not a programming problem, so there is no autograder. But you should provide pseudocode in your
written answer – that is, code that doesn’t necessarily run on a computer, but which makes your strategy
precise.

Hint: what’s the best element to use as the root?

Solution:
Defcreate bst(arr):

Initialize a BST
Def reccursive algorithm

if length of array is 0:
return none

if length of array is 1:
Insert arr[0] into BST

mid = midpoint of array rounded down
Insert arr[mid] into BST
return reccursive algorithm for the left and right side of the midpoint

return BST

Programming Problem 1.

Suppose you are trying to remove outliers from a data set consisting of points in Rd. One of the simplest
approaches is to remove points that are in “sparse” regions – that is, points that don’t have many other
points close by. To do this, we might calculate the distance from a point to it’s kth closest neighbor. If this
distance is above some threshold, we consider the point an outlier.

More generally, the task of finding the distance from a query point to its kth closest “neighbor” is a com-
mon one in data science and machine learning. Here, we’ll consider the 1-dimensional version of the
problem of finding kth neighbor distance. In a file named knn_distance.py, write a function named
knn_distance(arr, q, k) that returns a pair of two things:

� the distance between q and the kth closest point to q in arr;

� the kth closest point to q in arr

The query point q does not need to be in arr. For simplicity, arr will be a Python list of numbers, and q

will be a number. k should start counting at one, so that knn_distance(arr, q, 1) returns the distance
between q and the point in arr closest to q. Your approach should have an expected time of Θ(n), where n
is the size of the input list. Your function may modify arr. In cases of a tie, the point you return is arbitrary
(though the distance is not). Your code can assume that k will be ≤ len((arr).

Example:

2



>>> knn_distance([3, 10, 52, 15], 19, 1)

(4, 15)

>>> knn_distance([3, 10, 52, 15,], 19, 2)

(9, 10)

>>> knn_distance([3, 10, 52, 15], 19, 3)

(16, 3)

As this is a programming problem, submit your code to the Gradescope autograder.

Solution:

import math

import random

def partition(arr, start, stop, pivot_ix):

"""Partition arr[start:stop] around pivot."""

left = []

pivot_count = 0

right = []

pivot = arr[pivot_ix]

for ix in range(start, stop):

if arr[ix] < pivot:

left.append(arr[ix])

elif arr[ix] == pivot:

pivot_count += 1

else:

right.append(arr[ix])

ix = start

for x in left:

arr[ix] = x

ix += 1

for i in range(pivot_count):

arr[ix] = pivot

ix += 1

for x in right:

arr[ix] = x

ix += 1

return start + len(left)

def quickselect(arr, k, start, stop):

"""Finds kth order statistic in numbers[start:stop])"""

if k > len(arr):

return math.inf

pivot_ix = random.randrange(start, stop)

pivot_ix = partition(arr, start, stop, pivot_ix)

pivot_order = pivot_ix + 1

if pivot_order == k:

return arr[pivot_ix]

elif pivot_order < k:

return quickselect(arr, k, pivot_ix + 1, stop)

else:

return quickselect(arr, k, start, pivot_ix)

3



def knn_distance(arr, q, k):

less = []

more = []

for ele in arr:

if ele <= q:

less.append(ele)

else:

more.append(ele)

from_less = quickselect(less, len(less) - k + 1, 0, len(less))

from_more = quickselect(more, k, 0, len(more))

out_diff = 0

out_val = 0

if abs(from_less - q) < abs(from_more - q):

out_diff = abs(q - from_less)

out_val = from_less

else:

out_diff = abs(q - from_more)

out_val = from_more

return (out_diff, out_val)

4


