
DSC 40B - Homework 06
Due: Monday, November 7

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope on Monday at 11:59 p.m.

Problem 1.

In the following, let

V = {0, 1, 2, 3, 4, 5, 6},
E = {(0, 2), (3, 2), (5, 6), (6, 1), (3, 0)}.

For this problem, you do not need to show your work.

a) Draw the undirected graph G = (V,E). Remember that when writing the edges of an undirected
graph, we often abuse notation and write (u, v) when we really mean {u, v}; we have done so here.

b) Draw the graph G = (V,E), assuming that G is directed.

c) Write down the connected components of G, assuming that G is undirected.

C1 = {0, 2, 3}, C2 = {1, 5, 6}, C3 = {4}

d) Write the adjacency matrix representation of G, assuming that G is undirected.

1





0 0 1 1 0 0 0
0 0 0 0 0 0 1
1 0 0 1 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 1 0


e) Write the adjacency matrix representation of G, assuming that G is directed.

0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0


Problem 2.

Suppose A is the adjacency matrix of an undirected graph. Let A2 be the squared matrix, obtained by
matrix multiplying A by itself. Show that the (i, j) entry of A2 is the number of ways to get from i to j in
exactly two hops (i.e., the number of paths of length two between node i and node j). Hint: Consult your
linear algebra notes/textbook to remember a formula for the (i, j) entry of the product of two matrices.

We are going to prove this fact for all n

Theorem: Raising an adjacency matrix A to the power of n for any graph G, gives the total number
of n-length walks between 2 vertices for the vith and vjth vertex.

Case when n = 1 It is easy to see that when n = 1, the adjency matrix gives the number of walks of length

1 it i - j as,
A1

ij = 1 if {vi, vj} ∈ E, 0 otherwise

That tells us that there is a 1 in Aij if there exist one edge between the 2 vertices vi, vj which corresponds
to a walk of length 1.

Now assuming, that An
ij gives the number of n length walks from vi, vj is true, we are going to prove that

the theorem holds for An+1. Since we assume that it is true for An I set that the number of n-length walks
from vi, vk is An

ik and that the number of walks of length 1 from vk, vj is equal to A1
kj . Then to get all walks

of n + 1 length, that it is the sum of all walks from vi, vk to vk, vj for all the possibilities of k, which yields
us, ∑

k=1

An
ikA

1
kj

Which is equal to the matrix mutliplication of An ×A1. Thus proving the theorem.

The following programming problem will ask you to write functions which accept a graph as input.
The graph will be an instance of the UndirectedGraph class (or DirectedGraph class, if the prob-
lem says so) from the dsc40graph module. You can install this module on your own computer
by running pip install dsc40graph. Alternatively, you can download the module from https:

//raw.githubusercontent.com/eldridgejm/dsc40graph/master/dsc40graph.py and place it in the
same directory as your code. Or, if you’d prefer, you can simply use DataHub to write your code – we

2



have pre-installed dsc40graph for you.

The documentation for the graph library, as well as examples of it in action, can be found at https:
//eldridgejm.github.io/dsc40graph/. This graph class behaves exactly like the graphs we have seen
in lecture; namely it has a .neighbors() method and a .nodes attribute.

Programming Problem 1.

We can use a graph to represent rivalries between universities. Each node in the graph is a university, and
an edge exists between two nodes if those two schools are rivals. For instance, the graph below represents
the fact that OSU and Michigan are rivals, OSU and USC are rivals, UCB and USC are rivals, but UCSD
does not have a rival.

OSU

Michigan

USC

UCB

UCSD

In a file called None, write a function assign_good_and_evil(graph) which determines if it is possible to
label each university as either “good” or “evil” such that every rivalry is between a “good” school and an
“evil” school. The input to the function will be a graph of type UndirectedGraph from the dsc40graph

package. If there is a way to label each node as “good” and “evil” so that every rivaly is between a “good”
school and an “evil” school, your function should return it as a dictionary mapping each node to a string,
'good' or 'evil'; if such a labeling is not possible, your function should return None.

For example:

>>> example_graph = dsc40graph.UndirectedGraph()

>>> example_graph.add_edge('Michigan', 'OSU')

>>> example_graph.add_edge('USC', 'OSU')

>>> example_graph.add_edge('USC', 'UCB')

>>> example_graph.add_node('UCSD')

>>> assign_good_and_evil(example_graph)

{

'OSU': 'good',

'Michigan': 'evil',

'USC': 'evil',

'UCB': 'good',

'UCSD': 'good'

}

Of course, there might be several ways to label the graph – your code need only return one labeling.

3


